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Multivariate Regression With mvrlm.sdf

Multivariate multiple regression (MMR) is a technique that extends multiple linear regression to include
models with multiple outcome variables. In EdSurvey, this technique can be used with mvrlm.sdf, which
accounts for the complex sample design of National Center for Education Statistics (NCES) data, similar to
the lm.sdf function in EdSurvey.

This document presents an example of fitting an MMR model to the National Assessment of Educational
Progress (NAEP) primer data with students’ sex (dsex) and the frequency of talking about studies at home
(b017451) as predictors. The outcome variables are the algebra and geometry subscales, each with a set
of five plausible values, and the weight variable is the full sample weight origwt. Taylor series variance
estimation is not currently available for multivariate regression, so variance is estimated using the jackknife
method, and the jackknife replicate weights are read in as well.

The | symbol is used in the model formula to separate the multiple outcome variables. The sampling weight is
the default weight for the dataset, unless otherwise specified. In the example below, the mvrlm.sdf function
uses origwt as the default weight for the NAEP primer data. The weightVar argument can be used to
manually specify the sampling weight. The mvrlm.sdf function also allows users to recode a predictor or
reset the reference level of a categorical predictor. Please consult the manual for more information about
these features.
library(EdSurvey)

sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

mlm1 <- mvrlm.sdf(algebra | geometry ~ dsex + b017451, data = sdf)
summary(mlm1)

##
## Formula: algebra | geometry ~ dsex + b017451
##
## jrrIMax:
## Weight variable: 'origwt'
## Variance method:
## JK replicates: 62
## full data n: 17606
## n used: 16331
##
## Coefficients:
##
## algebra
## coef se t dof Pr(>|t|)
## (Intercept) 272.20056 1.04042 261.62628 50.062 < 2.2e-16

∗This publication was prepared for NCES under Contract No. ED-IES-12-D-0002 with the American Institutes for Research.
Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

†The author would like to thank Dan Sherman and Mike Cohen for reviewing this document.
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## dsexFemale -0.87023 0.60461 -1.43933 59.273 0.1553167
## b017451Once every few weeks 4.56270 1.26649 3.60263 51.008 0.0007139
## b017451About once a week 11.57610 1.35723 8.52921 54.296 1.335e-11
## b0174512 or 3 times a week 14.79453 1.22471 12.08004 60.169 < 2.2e-16
## b017451Every day 8.20413 1.29110 6.35435 48.096 7.137e-08
##
## (Intercept) ***
## dsexFemale
## b017451Once every few weeks ***
## b017451About once a week ***
## b0174512 or 3 times a week ***
## b017451Every day ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## geometry
## coef se t dof Pr(>|t|)
## (Intercept) 268.15888 1.02654 261.22555 43.224 < 2.2e-16
## dsexFemale -1.46909 0.70813 -2.07460 54.956 0.042720
## b017451Once every few weeks 3.89595 1.15020 3.38718 66.796 0.001187
## b017451About once a week 8.92464 1.28604 6.93961 63.715 2.422e-09
## b0174512 or 3 times a week 12.73099 1.12302 11.33636 64.863 < 2.2e-16
## b017451Every day 5.91482 1.29863 4.55465 45.929 3.860e-05
##
## (Intercept) ***
## dsexFemale *
## b017451Once every few weeks **
## b017451About once a week ***
## b0174512 or 3 times a week ***
## b017451Every day ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual correlation matrix:
##
## algebra geometry
## algebra 1.000 0.853
## geometry 0.853 1.000
##
## Multiple R-squared by dependent variable:
##
## algebra geometry
## 0.0215 0.0172

The summary method outputs a separate coefficient table for each outcome variable. The residual correlation
matrix is also provided, as well as the R-squared value for each outcome variable.

Method Details

In the case of multivariate regression of the form

Y = XB +E

where Y is a matrix of n observations on s dependent variables; X is a matrix with columns for k+1
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independent variables; B is a matrix of regression coefficients, one column for each dependent variable; E is
a matrix of errors, a weighted regression is used so that the estimated coefficients (B̂) minimize the trace of
the weighted residual sum of squares and cross products matrix:

B̂ = ArgMinB tr((Y −XB)TW (Y −XB))

where Xi is the ith row of X, Yi is the ith row of Y , W is a diagonal matrix of the weights, and ArgMinB

means the value of B that minimizes the expression that follows it.

Estimation

The methods used to estimate coefficients, variance, and covariance for multivariate multiple regression are
largely similar to those used in univariate multiple regression.

Coefficient Estimation

The coefficient estimation in mvrlm.sdf produces the same coefficient estimates as when the regressions are
run separately using lm.sdf, and the details of these methods can be found in the vignette titled Statistics.

Variance Estimation

The variance estimation in mvrlm.sdf produces the same standard error estimates as when the regressions are
run separately using lm.sdf, and the details of these methods can be found in the vignette titled Statistics.

When the predicted value does not have plausible values, the variance of the coefficients is estimated according
to the section, “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present,
Using the Jackknife Method.”

When plausible values are present, the variance of the coefficients is estimated according to the section
“Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife
Method.”

Residual Variance-Covariance Matrix Estimation

In addition to estimation of the regression coefficients for each dependent variable, the MMR model also
produces residual covariance estimates for the dependent variables. The residual variance-covariance matrix
is a s × s matrix for a model with s dependent variables that summarizes residuals within and between
dependent variables.

The residuals for the ith dependent variable are calculated as follows:

Ri = Yi −Xβ̂i

where Yi is the p × n matrix of plausible values for the ith dependent variable, X is the k × n matrix of
independent variables, and β̂i is the p × k matrix of estimated coefficients for the p plausible values and the
k independent variables. When the ith dependent variable has no plausible values, Ri is simply the vector of
residuals for that variable.

To calculate the residual variance-covariance matrix, residuals must be summarized across plausible values.
For dependent variables with plausible values, the mean residual is taken across the plausible values for each
observation, and the residual value is simply taken for dependent variables without plausible values. The
residual vector for the ith dependent variable is calculated as follows:
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Ei = 1
p

p∑
a=1

ra

where ra is the ath column of the matrix of residuals Ri for the ith dependent variable. When the ith
dependent variable has no plausible values, Ei is simply the vector of residuals for that variable.

The s × s residual variance-covariance matrix is then calculated from the residual vectors for each dependent
variable as follows:


ET

1 E1 ET
1 E2 . . . ET

1 Es

ET
2 E1 ET

2 E2 . . . ET
2 Es

...
...

. . .
...

ET
s E1 ET

s E2 . . . ET
s Es


Coefficient Variance-Covariance Matrix Estimation

The vcov method can be used to find the coefficient variance-covariance matrix for MMR models. The
coefficient variance-covariance matrix is calculated using the methods detailed in the vignette titled Statistics,
where the imputation and sampling variance components are calculated separately and then summed to form
the variance-covariance matrix.

In the univariate case, the coefficient matrix is a k × k symmetric matrix for a model with k regression
coefficients, whereas the variance-covariance matrix for the multivariate case is a sk × sk symmetric block
matrix, where the k ×k blocks on the diagonal represent the variance-covariance values within each dependent
variable (these values match those in the variance-covariance matrix from a corresponding univariate model),
whereas the k × k off-diagonal blocks represent the variance-covariance values across dependent variables.


V1 C1,2 . . . C1,s

C2,1 V2 . . . C2,s

...
...

. . .
...

Cs,1 Cs,2 . . . Vs


The diagonal blocks Vi are k × k matrices of the following form for the ith dependent variable:

Vi = Vjrr + Vimp

When the variable does not have plausible values, Vimp is 0. The imputation and sampling variance components
are calculated as indicated by the “Estimation of Covariances” section in the vignette titled Statistics.

The off-diagonal blocks Ca,b are k × k matrices of the following form for dependent variables a and b:

Ca,b = Cjrr + Cimp

When one variable does not have plausible values, Cimp is 0. The imputation and sampling covariance
components are calculated as indicated by the “Estimation of Covariances” section in the vignette titled
Statistics.
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