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Introduction

Gap analysis is a function in the EdSurvey package that calculates the difference between two statistics (e.g.,
mean scores, achievement level percentages, percentiles, and student group percentages) for two groups in
a population. When computing the variance estimation of a difference, the assumption about two groups
decides how covariances are handled and how the degrees of freedom are calculated. In a simple random
sample data, an independent t-test often is employed to calculate the gap of the estimates and its variance,
where a covariance is assumed to be zero and not accounted in the variance estimation. On the other hand,
in a complex sampling designed assessment that involves plausible values, even two sampled groups are not
overlapping, they can still have covariance because of the way that they were sampled (e.g., they attended
the same school or were in the same classroom when sampled) and the way that their scores were obtained
(plausible values that involve multiple imputation). In other words, this covariance arises from the fact that
students in the same school have test scores and background factors that are correlated with each other and
is analogous to how the NCES calculates the overall scale scores and their standard errors for the National
Assessment of Educational Progress (NAEP). Therefore, when two groups are from the same assessment
sample (same assessment and year), EdSurvey assumes a dependence of the groups when calculating the gap
and accounts for covariance at the stratum level, as well as covariance in imputation that is shared nationally.
For observed values from different assessment samples (e.g., 2011 Mathematics and 2015 Mathematics),
EdSurvey assumes the groups do not have a covariance and treats them independently.

This document first compares gap analysis results under the two different assumptions—showing a difference
in variance estimation and p-values—and then describes the methodology EdSurvey uses to arrive at the
results.

Comparison of Values

Table 1 displays a comparison of relevant statistics of the average scale score gap between Black and White
students in 2011 and 2015 NAEP Mathematics Grade 4 assessments. The first block shows the outcomes from
the NAEP Data Explorer (NDE); the second block displays ¢-test outcomes from SAS when assuming the
two groups have no covariance; and the third block shows EdSurvey gap analysis results under the dependent
assumption that accounts for the covariance between the two groups.

Table 1: Black-White Mean Score Gap

Software Assumption  Year Black Avg.  White Avg. B-W Diff.  SE Diff. DoF Diff.  p-Value Diff.
NDE 2015 223.969 248.323 0.000
NDE 2011 223.921 248.959 0.000
NDE 2015—2011 0.306
SAS Independent 2015 223.969 248.323 —24.354 0.502 81.389 0.000
SAS Independent 2011 223.921 248.959 —25.039 0.438 90.102 0.000
SAS Independent  2015—2011 0.049 —0.636 0.685 0.667 165.779 0.306
EdSurvey  Dependent 2015 223.969 248.323 —24.354 0.462 45.768 0.000
EdSurvey  Dependent 2011 223.921 248.959 —25.039 0.434 62.786 0.000
EdSurvey  Dependent 2015—2011 0.049 —0.636 0.685 0.634 103.513 0.283
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When assuming the two groups have no covariance and using independent ¢-tests, SAS obtained results that
match with NDE in terms of mean estimates and p-values.!

Under the dependent assumption and after accounting for the covariance between the two groups, we observed
an agreement between SAS and EdSurvey in terms of the mean estimate, but they disagreed in standard
errors, degrees of freedom, and p-values.?

The results also showed that EdSurvey agreed with NDE in terms of mean estimates but not the p-values,
which suggests that the EdSurvey and NDE methodologies differ in some way—most likely the calculation of
the standard error and/or the calculation of the degrees of freedom resulting from the different assumptions
regarding covariance.

Variance Estimation Strategy

This section describes the gap analysis method used by EdSurvey for how covariances are handled and how
the degrees of freedom are calculated. The method for calculating the variance of a difference and the degrees
of freedom are mathematically equivalent to the “Dependent via Differences” method described by NCES
(2017).

Calculation of Variances and Covariances

EdSurvey assumes observed values from different assessment samples (e.g., 2011 Mathematics and 2015
Mathematics) do not have a covariance and treats them independently.

When two values are from the same sample (same assessment and year), the groups could overlap in several
different ways, and EdSurvey uses the same variance estimator for every type of overlap. This estimator
accounts for covariance at the stratum level, even when the groups are not overlapping (e.g., Males and
Females can still have covariances when they attend the same schools), as well as covariance in imputation
that is shared nationally.

The goal is then to calculate variance of the difference between a statistic calculated on two populations A
and Bj; call these statistics €4 and #. Then the variance of the difference is given by

Var(@a —0p) =Var(0a) + Var(0pg) —2Cov(04,05)

where Var(-) is the variance and Cov(-,-) is the covariance. This section explains the calculation of the
covariance, which also suffices to explain the calculation of the variances using the formula Cov(04,604) =
Var(64). Thus, the reader who wishes to know how Var(0) is calculated can simply find Cov(6,0).

The covariance term (Cov(04,60p)) is given by the sum of the sampling variance (Covj,,) and the imputation
variance (Covimyp):

Cov(04,08) = Covjrr(04,08) + Covimp(84,0B)

The sampling covariance is
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where 04, is the estimate of 64 using the jth jackknife replicate weights and the pth plausible value, 6 49, is
the estimate of 84 using the full sample weights and the pth plausible value, M is the number of plausible
values used in the calculation, and J is the number of jackknife replicates.

INote because the p-value for the Black-White score gap is too close to zero to meaningfully compare between the three
calculations, the difference between the change in the Black average score from 2011 to 2015 and the change in the White
average score from 2011 to 2015 also is computed.

2Note that B-W Diff., SE Diff., and DoF Diff. are unavailable in NDE gap analyses; see https://bit.ly/2vNTzJH.


https://nces.ed.gov/nationsreportcard/NDEHelp/WebHelp/dependent_t-tests__nde_statistical_specification.htm
https://nces.ed.gov/nationsreportcard/NDEHelp/WebHelp/dependent_t-tests__nde_statistical_specification.htm
https://bit.ly/2vNTzJH

The imputation variance is estimated according to the covariance analog to the Rubin (1987) variance
estimate:

M
M+1
Covimp(4:05) = 3rr 1y > (Bap — 0.40) (0, — O0)

where 6,4, is the estimate of 64 using the pth set of plausible values, and 640 is the average of 6,4, across the
plausible values.

Calculation of the Degrees of Freedom

These formulas allow for the calculation of the variance of 84 — 0 and the calculation of the t-statistic:
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When a difference is computed within a sample, this t-statistic then has degrees of freedom given by the
Johnson and Rust (1992) corrected degrees of freedom (dofr)

dOfJR = (3.16 — 2\/7?7) dOfWS

where dofy g is the Welch-Satterthwaite degrees of freedom estimate:
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When a difference is computed across samples, the traditional Welch-Satterthwaite equation is used. This is
the case for the rows labeled “2015$-$2011” in Table 1.
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